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Abstract
Most studies on metal/MgO interfaces have focused on the metal/MgO(001) and
metal/MgO(111) interfaces, but few studies have discussed the metal/MgO(110) interface. In
this work, an appropriate inversion formula is deduced specifically for fcc-metal/MgO(110)
(metal = Al, Ni, Pd, Cu, Ag, Au) interfaces. The required interatomic potentials across the
interface are extracted from ab initio adhesive energy calculations by using a generalized
Möbius inversion method. The differences between the metal/MgO(110) and metal/MgO(001)
systems are discussed in detail. In addition, we use all relevant potentials to investigate the
fracture processes for both Pd(001)/MgO(001) and Pd(110)/MgO(110) interfaces including the
oxygen vacancies. The results suggest that the fractures occur between the first and second
monolayer of the Pd slab for Pd(110)/MgO(110) and right at the interface for
Pd(001)/MgO(001).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The metal–ceramic interface is an important issue in catalysis,
transistors, anticorrosion coatings, etc [1–3]. Its unique atomic
and electronic structures usually lead to particular chemical
and physical properties, thus attracting many theoretical and
experimental studies [4–8].

In this work, we are interested in metal/MgO interfaces,
which are one of the most widely studied topics. Actually,
a large number of ab initio calculations have been performed
on this system, focusing on the electronic properties and ideal
interface structures. However, the ab initio method is very
costly for large-scale simulations, which are usually necessary
for some interface problems such as misfit dislocations and
wetting. So an atomistic simulation based on interatomic
potentials is required.

In fact, empirical potentials across interfaces are a long-
studied problem, and have not been solved until now. For
metal/MgO(001) interfaces, Finnis and Duffy et al [9, 10]
developed a discrete classical model (DCM) in the 1990s, but
this model is not very widely used due to some limitations.
In 2005, we found a way to derive the interfacial potentials
from ab initio adhesive energies analytically, called the Chen–
Möbius inversion method [11]. In the past few years, we have

used it to study many interfaces including metal/MgO(001)
ones [12–14]. It is very important that the potentials
are strongly associated with the interface orientation. So
for metal/MgO(001) and metal/MgO(110) interfaces, their
potentials may be different, corresponding to the quite different
electronic structures on the interfaces. This is the purpose
of the present work, to obtain the interatomic potentials for
metal/MgO(110) interfaces, and find their applications.

The paper is organized as follows. In section 2, an
inversion formula for fcc-M/MgO(110) (M = Al, Ni, Pd,
Cu, Ag, Au) interfaces is derived, in which a series of
interfacial potentials are extracted from ab initio adhesive
energy calculations. In section 3, a fracture on Pd/MgO(110)
is investigated and the result is compared with that on
Pd/MgO(001), where the vacancies on the MgO surface are
taken into account. Finally, section 4 is the conclusion.

2. Methodology

2.1. Interface structure

Before deriving the interfacial potentials, we would like to give
a brief description of the metal/MgO(110) interface. Virtual
structures with two interfaces are adopted in this work, as
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Figure 1. Two-interface structures of M/MgO(110): (a) metal on top of Mg ion, (b) metal on top of O ion. In this figure, d is the interfacial
distance, aM and aMgO are the lattice constants of metal and MgO, respectively.

Table 1. DFT calculations of the lattice constants of MgO (aMgO)
and metals (aM, M = Al, Ni, Pd, Cu, Ag, Au), and the corresponding
interfacial misfits (defined by 2(aMgO − aM)/(aMgO + aM)).

MgO Al Ni Pd Cu Ag Au

Lattice constants
(Å)

4.17 3.99 3.42 3.85 3.52 4.02 4.06

Misfit (%) 4.41 19.76 7.98 16.9 3.66 2.67

illustrated in figure 1. These structures are chosen carefully
to help simplify the inversion of potentials. Table 1 shows
their lattice constants and interfacial misfits. The former are
calculated by the Vienna Ab Initio Simulation Package (VASP)
and the latter are used to evaluate the matchable extent of a
certain interface. For convenience, we force the lattices of bulk
metals to match that of bulk MgO at the interface.

We adopt the pair potential approach to study the
metal/MgO interfaces, just like in our previous studies [12–14].
According to the definition of the interfacial adhesive energy
(Ead), it can be obtained by subtracting the contributions of
metal and MgO parts from the total energy. Therefore, Ead

is equal to the summation over all pair interactions across the
interfaces and can be written as:

Ead = Etotal − EMgO − EM

=
∑

i, j

�M−Mg(ri j ) +
∑

i ′, j ′
�M−O(ri ′ j ′) (1)

where Etotal is the total energy, EMgO and EM are the partial
energies of MgO and metal slabs, i , j , i ′, j ′ are the atomic
identifications across the interfaces, ri j and ri ′ j ′ are the
pair distances. Usually, Ead can be obtained by ab initio
calculations. Our purpose is to get �M−Mg and �M−O from
Eads data by solving equation (1).

2.2. Details of ab initio calculations

In this work, all ab initio calculations are implemented in
VASP [15], based on density functional theory (DFT) with the
projector augmented wave-generalized gradient approximation
(PAW-GGA) method [16, 17]. These calculations are used
to obtain the lattice constants in table 1 and the interfacial
adhesive energy demonstrated in figure 2.

The plane-wave cutoff energy is 450 eV for the
calculations of lattice constants, with a k-mesh of 7×7×7. As
for the calculation of the interfacial adhesive energy, the plane-
wave cutoff energy is expanded up to 500 eV, with a k-mesh
of 5 × 5 × 1. In addition, it should be noted that the model
displayed in figure 1 is just used to make it easier for readers
to know how to get equation (1). Actually, we use a model
consisting of four layers of MgO and five layers of metal to
calculate the interfacial adhesive energy. The adhesive energy
changes little with more layers of MgO or metal.

2.3. Inversion formula

Now, the Pd/MgO(110) interface is used as an example to
present the main derivation. The two models in figures 1(a)
and (b) are just Mg and O ions exchanged. So the difference
between their adhesive energy expressions (denoted as EPd→Mg

and EPd→O, respectively) is just the exchange of �Pd−Mg and
�Pd−O. According to the interface structures in figure 1, the
formula for EPd→Mg is

EPd→Mg(d) =
∞∑

l,l′=0

∞∑

m,n=−∞

{
�Pd−Mg

([(
d + l

(√
2

2
aMgO

)

+ l ′
(√

2

2
aPd

))2

+
(√

2m

(√
2

2
aMgO

))2

2



J. Phys.: Condens. Matter 22 (2010) 215001 J Chen and N Chen

Figure 2. Adhesive energy versus d curves of M/MgO(110) interfaces. Circles are original ab initio data, and solid curves are recalculated
data by interfacial potentials.
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(2)

where l, l ′, m, and n are atomic indices perpendicular to or
parallel with the interface plane. Equation (2) is the specific
form of equation (1) for the fcc-M/MgO(110) interface. We
want to solve it to get �Pd−Mg and �Pd−O. This is quite a
complex inverse problem, and some skills are desired.

First, by introducing two variables

E± = EPd→Mg ± EPd→O �± = �Pd−Mg ± �Pd−O (3)

equation (2) is changed to

E±(d) =
∞∑

l,l′=0

∞∑

m,n=−∞
(±1)l+l′+m+n

× �±
([(

d + 1

2
l
(√

2

2
aMgO

)
+ 1

2
l ′
(√

2

2
aPd

))2

+ ((
√

2m)2 + n2)

(√
2

4
aMgO

)2]1/2)
. (4)

Then, by defining a medium variable H±

H±(d) =
∞∑

m,n=−∞
(±1)m+n

× �±
(√

d2 + (2m2 + n2)

(√
2

4
aMgO

)2)
, (5)

equation (4) can be simplified to

E±(d) =
∞∑

l,l′=0

(±1)l+l′ H±
(

d + 1

2
l
(√

2

2
aMgO

)

+ 1

2
l ′
(√

2

2
aPd

))
. (6)

4
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Figure 3. Potential curves of �M−Mg(d) and �M−O(d).

Now, we use the vectors:

E =
(

E+
E−

)
H =

(
H+
H−

)
� =

(
�+
�−

)
(7)

to rewrite equation (6) in the following form

E(d) =
∞∑

l,l′=0

Al,l′ H

(
d + 1

2
l

(√
2

2
aMgO

)
+ 1

2
l ′
(√

2

2
aPd

))

(8)
Al,l′ = Cl Ml′ (9)

where Al,l′ , Cl , and Ml′ are all 2 × 2 matrices.
It is very interesting to find that equation (8) can be

solved by using the inversion coefficients {BL ,L ′ }, which are
calculated by the formula:

BL ,L ′ = DL NL ′
∞∑

L=0

L∑

l=0

DL−l Cl = δL ,0

∞∑

L ′=0

L ′∑

l′=0

NL ′−l′ Ml′ = δL ′,0 ∀L, L ′, l, l ′ ∈ Z−. (10)

From equations (8) to (10), it is easy to prove that

∞∑
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√
2

4
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=
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Figure 4. (a) Potential curves of �Pd−Mg(d) and �Pd−O(d), where triangles and circles are potentials of Pd/MgO(001), and solid curves are
potentials of Pd/MgO(110). (b) Adhesive energy versus d curves of Pd/MgO(110) interfaces. Triangles and circles are original ab initio data,
and solid curves are recalculated data by interfacial potentials of Pd/MgO(001).

Figure 5. (a) Initial interface structure of Pd/MgO(110). (b) Broken interface structure of Pd/MgO(110). The interface area is 5a1 × 5a2,
where a1 is the lattice constant of MgO and a2 is equal to

√
2/2a1.

× H

(
d + 1

2
L

(√
2

2
aMgO

)
+ 1

2
L ′

(√
2

2
aPd

))

=
∞∑

L=0

L∑

l=0

δL ,0δL ′,0 H

(
d + 1

2
L

(√
2

2
aMgO

)

+ 1

2
L ′

(√
2

2
aPd

))

= H (d). (11)

So H (d) is

H (d) =
∞∑

i, j=0

Di N j E

(
d + i

√
2

4
aMgO + j

√
2

4
aPd

)
. (12)

Half of the inverse problem of equation (2) has been solved.
The remaining work is to solve equation (5). For this purpose,
it is rewritten as

H (d) =
∞∑

k=0

(±1)kh(k)�
(√

d2 + k(
√

2aMgO/4)2
)
. (13)

It can be proved that h(k) is equal to the number of integer
solutions for k = 2m2+n2 and more details can be seen in [13].
Again, another inversion coefficient g(n) is introduced, which
satisfies the recursive relation:

∞∑

m=0

h(m)g(k − m) = δk,0. (14)

From equations (13) and (14), it is not difficult to prove that:
∞∑

n=0

(±1)n g(n)H±
(√

d2 + n
(√

2

4
aMgO

)2)

=
∞∑

n=0

(±1)n g(n)

∞∑

m=0

(±1)mh(m)

× �±
(√

d2 + n

(√
2

4
aMgO

)2

+ m

(√
2

4
aMgO

)2)

=
∞∑

k=0

(±1)k
k∑

m=0

h(m)g(k − m)

6
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Figure 6. (a) Initial interface structure of Pd/MgO(001). (b) Broken interface structure of Pd/MgO(001). The interface area is 5a1 × 5a1. This
result is consistent with our previous study in [14].

Figure 7. Interface structure of Pd/MgO(110) including an oxygen vacancy. The interface area is (a) 3a1 × 3a2, (b) 5a1 × 5a2, and
(c) 10a1 × 10a2.

× �±
(√

d2 + k
(√

2

4
aMgO

)2)

=
∞∑

k=0

(±1)kδk,0�±
(√

d2 + k
(√

2

4
aMgO

)2)

= �±(d). (15)

In other words, equation (5)’s solution is

�±(d) =
∞∑

n=0

(±1)n g(n)H±
(√

d2 + n

(√
2

4
aMgO

)2)
. (16)

The corresponding coefficients h(k) and g(k) are listed in
table 2, while the coefficients Al,l′ and Bl,l′ are shown in
table 3.

Summarizing equations (12) and (16), we achieve the final
inversion formula of equation (2)

(
�+(d)

�−(d)

)
=

∞∑

n=0

(±1)ng(n)

∞∑

i, j=0

Bi, j

×
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4 aMgO
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2
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2

4 aPd
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2
4 aMgO

)2 + i
√

2
4 aMgO + j

√
2

4 aPd

)

⎞

⎟⎟⎠

(17)

where E±, aMgO, and aPd all come from previous DFT
calculations. So the interfacial potentials �Pd−Mg(d) and

7
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Figure 8. Broken interface structure of Pd/MgO(110) including an
oxygen vacancy (marked by the arrow).

Table 2. Values of original coefficients h(k) and inversion
coefficients g(k).

k h(k) g(k)

0 1 1
1 2 −2
2 2 2
3 4 −4
4 2 10
5 0 −16
6 4 20
7 0 −32
8 2 58

�Pd−O(d) are

�Pd−Mg(d) = �+(d) + �−(d)

2

�Pd−O(d) = �+(d) − �−(d)

2
.

(18)

2.4. The inverted pair potentials

Based on the method introduced above, the interfacial potential
curves �Pd−Mg and �Pd−O are obtained, as shown in figure 3.
For applications, they are fitted by the Rahman–Stillinger–
Lemberg (RSL2) potential function:

� = D0ey(1− R
R0

) + a1

1 + eb1(R−c1)
+ a2

1 + eb2(R−c2)

+ a3

1 + eb3(R−c3)
. (19)

The potential parameters are listed in table 4, including
the results for many other fcc-M/MgO(110) interfaces in the
same way. In addition, the parameters of Pd/MgO(001) are
also listed in table 4. By the way, figure 2 demonstrates the

Table 3. Values of original coefficients Al,l′ and inversion
coefficients Bl,l′ .

l l ′ A(l, l ′) B(l, l ′)

0 0
[ 1 0

0 1

] [ 1 0
0 1

]

1 0
[ 1 0

0 −1

] [ −1 0
0 1

]

0 1
[ 1 0

0 −1

] [ −1 0
0 1

]

1 1
[ 1 0

0 1

] [ 1 0
0 1

]

2 0
[ 1 0

0 1

] [ 0 0
0 0

]

2 1
[ 1 0

0 −1

] [ 0 0
0 0

]

2 2
[ 1 0

0 1

] [ 0 0
0 0

]

1 2
[ 1 0

0 −1

] [ 0 0
0 0

]

0 2
[ 1 0

0 1

] [ 0 0
0 0

]

recalculated interfacial adhesive energies by potentials, which
agree quite well with the original ab initio data. This check
shows that our inverse method is self-consistent.

3. The fracture of the Pd/MgO(110) interface

In our previous work [14], we have pointed out that the
Pd/MgO(001) interface tends to break between the MgO and
Pd interface (see figure 6). But the pair potentials obtained
for the Pd/MgO(001) interface do not work well with the
Pd/MgO(110) interface. To illustrate this point, a simple
comparison is displayed in figure 4. We can see that both
potential and adhesive energy calculated by the potentials of
Pd/MgO(001) do not match well with those of Pd/MgO(110).
So it is necessary to study the Pd/MgO(110) interface by
Pd/MgO(110) interfacial potentials.

Now we intend to learn how the fracture of the
Pd/MgO(110) interface occurs by using the Pd/MgO(110)
potentials. The atomistic simulation method used in this work
is energy minimization performed by Cerius2 software. In
addition, the interatomic pair potentials employed in Pd and
MgO slabs, such as �Pd−Pd, �Mg−Mg, �Mg−O, and �O−O,
follow our previous works [12].

As revealed by ab initio calculations, the equilibrium
structure of the Pd/MgO interface is Pd on top of O ions, as
illustrated in figure 5(a). The interface model consists of 15
Pd monolayers (MLs) and seven MgO MLs with an interface
area of 5a1 × 5a2. Moreover, as the boundary condition, the
last three Pd MLs and one MgO ML are fixed in atomistic
simulation (see figure 5). During the simulation, we let the
fixed Pd layers be pulled away from MgO slab step by step.
At each step, the free atoms and ions are fully relaxed. The
variations of total energy and tensile stress in this process are
displayed in figure 9(a).

As a result, we find that the fracture of Pd/MgO(110)
occurs between the first and second Pd MLs (see figure 5(b)),
different from the Pd/MgO(001) case (see figure 6(b)). In
figure 6(b), the fracture of Pd/MgO(001) is believed to occur
between Pd and MgO. This can be attributed to their different
adhesive properties on the interface. For a brief discussion,
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Figure 9. Curves of total energy and tensile stress versus stretch length. (a) σv = 0, (b) σv = 1/9, (c) σv = 1/25, and (d) σv = 1/49.

Table 4. Potential parameters of M/MgO(110) and Pd/MgO(001).

D0 (eV) R0 (Å) Y a1 (eV) b1 (Å
−1

) c1 (Å) a2 (eV) b2 (Å
−1

) c2 (Å) a3 (eV) b3 (Å
−1

) c3 (Å)

M/MgO(110)

�Al−Mg 2.45 1.00 7.42 740.17 2.03 0.20 −518.95 1.85 0.08 0.70 1.74 2.50
�Al−O 0.01 1.00 5.43 0.38 1.39 2.13 −26.53 1.81 0.93 196.28 4.66 0.65
�Ni−Mg 35.78 1.00 6.91 467.07 2.59 0.45 −546.87 2.65 0.24 −0.09 2.59 3.74
�Ni−O 465.41 1.00 1.73 −0.92 3.07 2.43 −2840.83 1.70 0.25 421.19 1.66 0.84
�Pd−Mg 32.26 1.00 4.98 740.14 2.31 0.40 −518.97 2.17 0.37 0.35 2.68 2.63
�Pd−O 0.01 1.00 5.44 1.39 3.33 1.83 −26.09 2.07 1.15 196.29 4.33 0.81
�Cu−Mg 18.31 1.00 4.38 186.89 2.13 0.35 −41.11 1.88 0.65 −0.42 34.44 1.51
�Cu−O 218.64 1.00 1.82 161.33 3.71 0.56 −2086.21 1.81 0.08 368.41 1.80 0.54
�Ag−Mg 5.01 1.00 1.93 4.06 2.62 2.03 −87.31 2.64 0.83 88.01 3.63 1.18
�Ag−O 1.44 1.00 2.71 5.13 3.51 1.55 −94.59 1.75 0.0 92.62 5.24 1.04
�Au−Mg 0.38 1.00 5.51 9.17 8.53 0.62 −82.35 2.00 1.22 542.66 2.00 0.33
�Au−O 39.13 1.00 4.18 143.76 1.99 0.28 −42.62 1.85 1.08 365.91 6.66 0.71

Pd/MgO(001)

�Pd−Mg 32.81 1.00 3.64 102.55 3.49 0.84 −85.93 2.75 0.47 49.71 1.51 0.01
�Pd−O 5.88 1.00 2.53 27.15 2.64 0.65 −37.87 1.55 0.48 201.55 5.70 0.87

ab initio calculations reveal that the adhesive energy on the
ideal interface is about 0.15 eV Å

−2
for Pd/MgO(110) and

0.10 eV Å
−2

for Pd/MgO(001). This suggests that the bonding
of Pd/MgO(110) is stronger than that of Pd/MgO(001) on the
interface. So it is understandable that the fracture processes are
quite different for these two orientations.

Furthermore, we consider the oxygen vacancy on the MgO
surface and define the vacancy density σv = N/S, where N
and S denote the number of vacancies and the unit cell on
the surface, respectively. For example, there is one oxygen
vacancy on the surface, as shown in figure 7(b), and the
interface area is 5a1 × 5a2, so the value of σv is 1/25. In this
work, we choose the σvs values to be 1/9, 1/25, 1/49, and 0.
The zero represents the ideal interface and the interface area for

this case is 5a1 × 5a2. The calculation reveals that the fracture
always occurs between the first and second Pd MLs, just the
same as in the no vacancy case. An example of σv = 1/25 is
displayed in figure 8. In addition, the total energy and tensile
stress (σstress) variations are presented in figure 9. Although
the curves of σstress are similar for different σv, the ideal case
seems to have a greater value at the same stretch length. So the
fracture is the most difficult to occur in this case. Moreover,
we also find that the value of σstress increases with the decrease
of σv. In particular, the curve of σv = 1/49 has almost the
same σstress as the ideal case. For instance, when the interface
breaks, the value of σstress is 19.9 GPa, 20.9 GPa, 21.6 GPa,
and 21.6 GPa for the case of σv = 1/9, 1/25, 1/49, and 0,
respectively. Therefore, we suppose that the vacancy existing

9
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Figure 10. Surface structure of MgO(110) including two oxygen
vacancies. The interface area is 10a1 × 10a2.

on the surface is in favor of the occurrence of fracture and the
fracture occurs more easily at a high vacancy density interface.

On the other hand, we want to know how the fracture
occurs, when oxygen vacancies are set at different positions.
Therefore, we assume there are two oxygen vacancies existing
at AB, AC, and AD respectively (see figure 10). The
total energy and tensile stress variations in all situations are
calculated and have been presented in figure 11. From our
calculations, we find that they all break between the first and
second Pd MLs, just like the former cases. But it seems that
the fracture occurs more easily in the AB case, because the
σstress of AB is smaller than the other cases. For example, as
the interface breaks, the value of σstress is 19.4 GPa, 21.1 GPa,
and 21.2 GPa for the case of AB, AC, and AD respectively.
Why is there such a big difference between AB and the other

cases? To answer this question, a comparison of their broken
MgO(110) surface is displayed in figure 12. Two separate
vacancies can be seen clearly in the AC and AD cases, but
in the AB case they are combined together. That is to say, if
two oxygen vacancies on the MgO(110) surface are placed far
enough apart, although their relative positions can be different,
we will always get two similar vacancy structures. On the
contrary, when two vacancies are set very close, such as in
the AB case, they tend to combine together and form a new
vacancy structure. Based on the above discussions, we can see
that oxygen vacancies placed at different positions might bring
different vacancy structures, and thus will affect the fracture on
the interface.

4. Conclusion

In this work, we use the Chen–Möbius method to calculate the
interatomic potentials across fcc-M/MgO(110) interfaces. The
potentials are analytically derived based on the pair interaction
assumption, and then numerically calculated.

For an application, we use the resultant potentials to study
the fracture processes of Pd/MgO(001) and Pd/MgO(110)
interfaces. This shows that the fracture occurs between the
first and second Pd ML for the Pd/MgO(110) interface, and
right on the interface for the Pd/MgO(001) interface. This
difference may come from their different adhesive energies at
the interface. Furthermore, we also take into account the effect
of the oxygen vacancies on the fracture of the Pd/MgO(110)
interface. Our studies reveal that the presence of an oxygen
vacancy favors the occurrence of fracture and higher vacancy
density makes the interface easier to break. In addition, we also
find that oxygen vacancies existing on the MgO(110) surface
tend to form separate vacancy structures while the distance

Figure 11. Curves of total energy and tensile stress versus stretch length. Two oxygen vacancies are set at (a) A and B, (b) A and C, and (c) A
and D.
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Figure 12. Broken surface structure of MgO(110) including two oxygen vacancies. Two oxygen vacancies are set at (a) A and B, (b) A and C,
and (c) A and D.

between them is large enough, but if they are close enough
to each other, they prefer to form a larger vacancy structure,
which conversely accelerates the occurrence of fracture. Based
on the above discussions, we believe the interatomic potential
obtained in this paper is a powerful tool to study interface
structures and related mechanical properties.
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